If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-15b-56=0
a = 1; b = -15; c = -56;
Δ = b2-4ac
Δ = -152-4·1·(-56)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{449}}{2*1}=\frac{15-\sqrt{449}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{449}}{2*1}=\frac{15+\sqrt{449}}{2} $
| 4k-18=12+10k | | 4x+24=x+8 | | 14d-1=14d-d-20 | | 6.4=2r | | a^2-25a-144=0 | | j =4.5 | | 7x-5=10x-(x+15) | | 12-2g=g+2-20 | | 4x+24=-5x-13 | | 32x3x-32x1=32x8 | | 3(x+8)+2x=76 | | 6s+42=3s | | -16-19q=-15 | | 0.2(10x+22)=2.9(0.2x+5) | | x=5.33333333/6.4 | | -16v+4=-15v+18 | | 18=2(x+30 | | 2x2-50x=0 | | 10x+7=-12+139 | | 10=0.17+0.8x | | 19.67+2.5j=-0.5-17.23 | | (47+3x)+(4x+10)=90 | | 3+6(8v+7)=141 | | 3x+15+4x=180 | | 8x+3-2x=8+x+10 | | -64.41=3.8(3.9x+4.5) | | -2-5u=7u+18-13u | | 5x/4=10-5x/8 | | 1=3x+2=3x=180 | | 16.07+0.05(x+3)=16.82-0.09 | | -4(4x-4.5)=114 | | S=A/1+n |